FIG. 5. Variation of the limiting values of c_{11} and c'. The smooth curves for c_{11}^0 and c'^0 are taken from Ref. 4. The crosses are infinite-frequency elastic constants reported in Ref. 5; see text for a discussion of the choice of the c_{11}^∞ and c'^∞ smooth curves. Note that the vertical scale for c' is 10 times larger than that for c_{11} . a function of temperature at ~ 16 GHz, 5 and the elastic stiffness corresponding to this wave is $c_L = c_{11} - c' + c_{44}$. The open circles shown in Fig. 5 represent c_{11} values calculated from $c_{11} = c_L(16 \text{ GHz}) + c'^{\infty} - c_{44}^{\infty}$. (Since there is no dis- FIG. 6. Inverse relaxation strengths as a function of $\Delta T = T - T_{\lambda}$ (in °K). The results for NH₄Cl are taken from Ref. 3. persion for the [100] shear wave, c_{44}^{∞} can be replaced by the known c_{44}^{0} .) Near the transition these c_{11} values should correspond to c_{11}^{∞} since the relaxation times becomes very long. The c_{11}^{∞} values between 242.5 and 297 °K were obtained by linear interpolation (see Fig. 5). Uncertainties in c_{11}^{∞} due to ambiguities in the c'^{∞} values are less than 1%, which would correspond to less than a 10% possible systematic error in the relaxation strength for the c_{11} wave. The values of the relaxation strength C calculated at various temperatures from the smooth-curve values of c^{∞} and c^{0} are shown in Fig. 6, where 1/C is plotted versus $\Delta T = T - T_{\lambda}$. The relaxation strength for the c_{11} wave in NH₄Cl at 1 atm is also shown for comparison. This empirical plot indicates that 1/C varies linearly with ΔT for the [100] longitudinal wave in both NH₄Cl and NH₄Br. Indeed, this linear variation extends out to $\Delta T = 50$ for NH₄Cl. The inverse relaxation strength for the longitudinal wave can be represented in the form $$C^{-1}(\epsilon) = C^{-1}(0) + b \epsilon^m$$, (6) where ϵ is the reduced temperature and m is an empirical exponent equal to 1 at 1 atm. The parameters $C^{-1}(0)$ and b are, respectively, 6.4 and 120 (in units of 10^6 cm sec⁻¹) for NH₄Br; the FIG. 7. Inverse relaxation times for the [100] longitudinal wave and the [110] transverse wave as a function of ΔT (in °K).